We know that,
i = sqrt (-1)
and therfore,
i^2 = -1
Also, sqrt (9) = 3
sqrt (-9) = sqrt(-1).sqrt(9) = i.sqrt(9) = 3i
We can check this.
(3i)^2 = 3^2.i^2 = 9.-1 = -9
So,
(3i)^2 = -9
3i = sqrt(-9)
3i is an imaginary number.
Complex number are imaginary and real numbers together.
e.g.
6 + 3i is a complex number.
Addition of complex numbers
Here we have two complex numbers zi and z2
zi = a + bi
z2 = c + di
we add the real parts then add the imaginary parts.
zi + z2 = (a + c) + (bi + di)
= (a + c) + (b + d)i
Subtraction of complex numbers
Here we have two complex numbers zi and z2
zi = a + bi
z2 = c + di
we subtract the real parts then subtract the imaginary parts.
zi - z2 = (a - c) + (bi - di)
= (a - c) + (b - d)i
Multiplication of complex numbers
Again we have two complex numbers zi and z2
zi = a + bi
z2 = c + di
zi . z2 = (a + bi) . (c + di)
= a(c+di) + bi(c+di)
= ac+adi + cbi + (bi.di) ....... (eqn 1)
let's sort out the (bi.di)
(bi.di) = bd.i^2
we know that i^2 = -1
so, db.i^2 = -bd
Returning to where we were in eqn (1),
zi . z2 = ac + adi + cbi - (bi.di)
= ac + adi + cbi - bd
= (ac - bd) + (adi + cbi)
= (ac - bd) + (ad + cb).i
Division of complex numbers
Again we have two complex numbers zi and z2
zi = a + bi
z2 = c + di
zi / z2 = (a+bi)/(c+di)
We can use the rule:
(a+b).(a-b) = a^2-b^2
The Conjugate of a complex number is a reverse of the direction of the imaginary number.
The Conjugate of (a + bi)is (a - bi)
The Conjugate is written with a bar over the top, so the conjugate of z1 is written z1 bar.
How do I type that here? I don't know!
When we multiply an imaginary number by its conjugate we get a Real number. Here's the trick:
zi (a+bi) c-di ac-adi + bci-bdi^2
--- = ------ . ---- = -------------------
z2 (c+di) c-di c^2 + d^2
ac-adi + bci-bdi^2 [remember that , i^2 = -1]
= -------------------
c^2 + d^2
ac-adi + bci+bd
= -----------------
c^2 + d^2
(ac+bd) + (bc-ad)i
= ---------------------
c^2 + d^2
ac+bd bc-ad
= -------- + ------- . i
c^2+d^2 c^2+d^2
example.
1+2i (1+2i) 2-3i (1.2) + (1.(-3i)) + (2.2i) + (2i.(-3i))
---- = ------ . ---- = ---------------------------------------
2+3i (2+3i) 2-3i (2.2) + (2.(-3i) + (3i.(2) + (3i.(-3i))
2 - 3i + 4i - 6i^2
= ------------------
4 - 6i + 6i + 9i^2
2 - 3i + 4i + 6
= ------------------
4 + 9
8 + i
= -----
13
= 8 1
--- + --- i
13 13
No comments:
Post a Comment